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ABSTRACT 

This paper outlines a methodology for determining 

the statistics associated with the time evolution of a 

nonlinear multi-body dynamic system operated under 

input uncertainty. The focus is on the dynamics of ground 

vehicle systems in environments characterized by multiple 

sources of uncertainty: road topography, friction 

coefficient at the road/tire interface and aerodynamic 

force loading. Drawing on parametric maximum 

likelihood estimation, the methodology outlined is general 

and can be applied to systematically study the impact of 

sources of uncertainty characterized herein by random 

processes. The proposed framework is demonstrated 

through a study that characterizes the uncertainty induced 

in the loading of the lower control arm of an SUV type 

vehicle by uncertainty associated with road topography. 

1. INTRODUCTION 

The goal of this work is to establish an analytically 

sound and computationally efficient framework for 

quantifying uncertainty in the dynamics of complex multi-

body systems. The motivating question for this effort is as 

follows: how can one predict an average response and 

produce a confidence interval in relation to the time 

evolution of a complex multi-body system given a certain 

degree of input uncertainty?  Herein, of interest is 

answering this question for ground vehicle systems whose 

dynamics are obtained as the solution of a set of 

differential-algebraic equations (Hairer; Wanner 1996). 

The differential equations follow from Newton's second 

law. The algebraic equations are nonlinear kinematic 

equations that constrain the evolution of the bodies that 

make up the system (Haug 1989). 

The motivating question above is relevant for vehicle 

Condition-Based Maintenance (CBM) where the goal is to 

predict durability and fatigue of system components. The 

statistics of lower control arm loading in a High-Mobility 

Multi-Wheeled Vehicle (HMMWV) obtained through a 

multi-body dynamics simulation become the input to a 

durability analysis that can predict in a stochastic 

framework the condition of the part and recommend or 

postpone system maintenance. A stochastic 

characterization of system dynamics is also of interest in 

understanding the limit behavior of a dynamic system. For 

instance, providing real-time confidence intervals for 

certain vehicle maneuvers are useful in assessing its 

control when operating in icy road conditions. 

Vehicle dynamics analysis under uncertain 

environment conditions, e.g. road profile (elevation, 

roughness, friction coefficient) and aerodynamic loading, 

requires approaches that draw on random functions. The 

methodology is substantially more involved than required 

for handling uncertainty that enters the dynamic response 

through discrete design parameters associated with the 

model. For instance, uncertainty in suspension spring 

stiffness or damping rates can be handled through random 

variables. In this case, methods such as the polynomial 

chaos (PC), see, for instance, (Xiu; Karniadakis 2002) are 

suitable provided the number of random variables is 

small. This approach is not suitable here since a 

discretization of the road leads to a very large number of 

random variables (the road attributes at each road grid 

point). Moreover, the PC methodology requires direct 

access and modification of the computer program used to 

run the deterministic simulation of the dynamic system to 

produce first and second order moment statistical 

information. This represents a serious limitation if relying 

on commercial off-the-shelf (COTS) software, which is 

most often the case in industry when running complex 

high-fidelity vehicle dynamics simulation. 

In conjunction with Monte Carlo analysis, the 

alternative considered herein relies on random functions 

to capture uncertainty in system parameters and/or input. 

Limiting the discussion to three-dimensional road profiles, 

the methodology samples a posterior distribution that is 

conditioned on available road profile measurements. Two 

paths can be followed to implement this methodology. 

The first draws on a parametric representation of the 

uncertainty; the second is nonparametric in nature and as 
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such is more expensive to implement. It can rely on 

smoothing techniques for kernel estimation such as 

Nadaraya-Watson estimation, see, for instance, 

(Wasserman 2006), or draw on the orthogonal 

discretization of the spectral representation of positive 

definite functions as suggested, for instance, by Genton 

and Gorsich (2002). The parametric approach is used in 

this paper by considering Gaussian Random Functions as 

priors for the road profiles. Furthermore, the discussion 

will be limited to stationary processes although 

undergoing research is also investigating the nonstationary 

case. 

As is always the case, the use of a parametric model 

raises two legitimate questions: why a particular 

parametric model, and why is it fit to capture the statistics 

of the problem. Gaussian Random Functions (GRF) are 

completely defined by their correlation function, also 

known as variogram (Adler 1990; Cramér; Leadbetter 

1967). Consequently, scrutinizing the choice of a 

parametric GRF model translates into scrutinizing the 

choice of correlation function. There are several families 

of correlation functions, the more common being 

exponential, Matérn, linear, spherical, and cubic (see, for 

instance Santner et al. (2003)). In this context, and in 

order to demonstrate the proposed framework for 

uncertainty quantification in multi-body dynamics, a 

representative problem will be investigated in conjunction 

with the selection of a GRF-based prior. Specifically, an 

analysis will be carried out to assess the sensitivity of the 

response of a vehicle to uncertainty in system input, here a 

road profile. Of interest is the load history for the lower-

control arm of an HMMWV, a key quantity in the CBM 

of the vehicle. The parametric priors considered are (i) a 

GRF with a squared exponential correlation function, and 

(ii) the Ornstein-Uhlenbeck process. Pronounced 

sensitivity of the statistics of the loads acting on the lower 

control arm with respect to the choice of parametric model 

would suggest that serious consideration needs to be given 

to the nonparametric route, where the empirical step of 

variogram selection is avoided at the price of a more 

complex method and increase in simulation time. 

2. UNCERTAINTY HANDLING 

METHODOLOGY 

The discussion herein concerns handling uncertainty 

in spatial data. This situation commonly arises when 

limited information is used to generate road profiles 

subsequently used in the dynamic analysis of a ground 

vehicle. The uncertainty handling in aerodynamic loads, 

which can be addressed similarly, is not of primary 

interest in this study and will be omitted. 

The uncertainty quantification framework proposed is 

described in Figure 1. The assumption is that learning data 

is available as the result of field measurements. 

Referring to Figure 2, the measured data is provided on a 

“coarse” measurement grid: at each 
1 2

( , )x x  location an 

elevation y  is available. From an uncertainty 

characterization perspective, the dimension of this 

problem is 2d = . For dynamic analysis, road information 

is ideally available everywhere on the road as a 

continuous data. As this is not possible, data is provided 

on a fine grid (right image in Figure 2). If working with a 

parametric model, a correlation function is selected and a 

learning stage follows. Its outcome, a set of hyper-

parameters associated with the correlation function, is 

instrumental in generating the mean and covariance matrix 

ready to be used to generate sample road surfaces on the 

user specified fine grid. 

  

Figure 2. Coarse grid for learning, and fine grid employed 

in sampling for Monte Carlo analysis. Here 2d = . 

Gaussian Random Functions (GRF) or processes lead 

to a very versatile approach for the simulation of infinite 

dimensional uncertainty. By definition, a spatially 

distributed random function ( )y x , d∈x ℝ , is a GRF with 

mean function 
1

( ; )m θx  and correlation function 

2
( , ; )k θ′x x  for any set of space points 

{ }1 2
, , ,

M
= …X x x x ,  

 

Figure 1: Proposed uncertainty quantification framework 
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where { }1 2
, , ,

N
′ ′ ′ ′= …X x x x . The hyper-parameters 

1
θ  and 

2
θ  associated with the mean and covariance functions are 

obtained from a data set ( )Dy  at nodes { }1
, ,

M
D d d= … . 

The posterior distribution of the variable ( )Sy  at node 

points { }1
, ,

N
S s s= … , consistent with ( )Dy , is 

* *( , )N f K  (Rasmussen; Williams 2006), where 

( )* 1

2 2 1 1
( , ; ) ( , ; ) ( ) ( ; ) ( ; )S D D D D D Sθ θ θ θ−= − +f K K y m m

* 1

2 2 2 2
( , ; ) ( , ; ) ( , ; ) ( , ; )  S S S D D D D Sθ θ θ θ−= −K K K K K  

The key issues in sampling from this posterior are a) 

how to obtain the hyper-parameters from data, and b) how 

to sample from * *( , )N f K , especially in the case where 

M  is very large. The classical way to sample relies on a 

Cholesky factorization of *K , a costly order 3( )O M  

operation. The efficient sampling question is discussed at 

length in (Schmitt et al. 2008a). A brief description of the 

hyper-parameter calculation follows. 

 

2.1 Parameter Estimation 

 

The method used herein for the estimation of the 

hyper-parameters data draws on maximum likelihood 

estimation (MLE) (Rasmussen; Williams 2006). 

Specifically, it selects those hyper-parameters that 

maximize the log-likelihood function associated with the 

measured data. In the multivariate Gaussian with mean 

( ) Mθ ∈m ℝ  and covariance matrix ( ) M Mθ ×∈K ℝ  case, 

the log-likelihood function assumes the form 

11 1
log ( | ) ( ) log | ( ) | log 2

2 2 2

T
p

M
θ θ θ π−= − − −y W K W K

 

Here ( )θ= −W y m  and y  is the observed data. Note that 

{ }1 2
,θ θ θ= , and the dependence on the hyper-parameters 

θ  appears by means of the coordinates x . The gradients 

of the likelihood function can be computed analytically 

(Rasmussen; Williams 2006): 

1

1 1
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j j
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−
 ∂ ∂
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MATLAB’s fsolve function, which implements a quasi-

Newton approach for nonlinear equations, was used to 

solve the first order optimality conditions 

1

log ( | )
0

j

p θ

θ

∂
=

∂

y
 and 

2

log ( | )
0

j

p θ

θ

∂
=

∂

y
 and determine 

the hyper-parameters 
1

θ  and 
2

θ . The entire approach 

hinges at this point upon the selection of the parametric 

mean and covariance function. It is common to select a 

zero mean prior 0≡m , in which case only the 
2 j

θ  hyper-

parameters associated with the covariance matrix remain 

to be inferred through MLE. 

 

2.2 Covariance Function Selection 

 

The parametric covariance function adopted 

determines the expression of the matrix ( )θK  of the 

previous subsection, and it requires an understanding of 

the underlying statistics associated with the data. In what 

follows, the discussion focuses on four common choices 

of correlation function: squared exponential (SE), 

Ornstein-Uhlenbeck (OU) (Uhlenbeck; Ornstein 1930), 

Matérn (Matérn 1960), and neural network (NN) (Neal 

1996). 

The SE correlation function assumes the form 

2/ 2/

1 1 2 2

21 22

2

( ) ( )
( , ; ) exp

x x x x
k

γ γ

θ θ
θ

 ′ ′   − −
 ′ = − −        

x x , (4) 

where 1γ = . The hyper-parameters 
21

θ  and 
22

θ  are 

called the characteristic lengths associated with the 

stochastic process and control the degree of spatial 

correlation. Large values of these coefficients lead to large 

correlation lengths, while small values reduce the spatial 

correlation leading in the limit to white noise, that is, 

completely uncorrelated data. The SE is the only 

continuously differentiable member of the family of 

exponential GRF. As such, it is not commonly used for 

capturing road profiles, which are typically not 

characterized by this level of smoothness. Rather, Stein 
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(Stein 1999) recommends the Matérn family with the 

correlation function 

 

1

2

2 2 2
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r r
k r K
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ν
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ν ν
θ

ν

−    
=       Γ    

, (5) 

where Kν  is the modified Bessel function and ν  and l  

are positive hyper-parameters. The degree of smoothness 

of the ensuing GRF can be controlled through the 

parameter ν : the GRF is p -times differentiable if and 

only if pν > . Note that selecting 2γ =  in Eq. (4) leads 

to the OU random process, which is also a nonsmooth 

process although not as versatile as the Matérn family.  

The three covariance models discussed so far: SE, 

OU, and Matérn are stationary. Referring to Eq. (1), this 

means that for any set of points { }1 2
, , ,

M
= …X x x x , 

where M  is arbitrary, and for any vector d∈h ℝ , ( )y X  

and ( )+y X h  always have the same mean and covariance 

matrix. In particular, when 1M = , this means that the 

GRF should have the same mean and variance 

everywhere. Clearly, the stationary assumption does not 

hold in many cases. For vehicle simulation, consider the 

case of a road with a pothole in it, which cannot be 

captured by stationary processes. A versatile 

nonstationary neural network covariance function has 

been proposed by Neal (1996): 

( )( )
1 2

1 2

2
( , ; ) sin

1 2

T

T T

k
π

− ′
 
 ′ Σ =
 

Σ

′ ′+ +


Σ Σ 


x x

x x
x

x
x

x

ɶ ɶ

ɶ ɶ ɶ ɶ

, (6) 

where ( )1
1, , ,

d

T
x x…=xɶ  is an augmented input vector; the 

symmetric positive definite matrix Σ  contains the 

parameters associated with this GRF that are determined 

through MLE. Note that for the road profile problem 

2d = . 

Using this parameter estimation approach, a mean 

and co-variance function for Gaussian processes is 

determined. This is then used to generate new roads which 

are statistically equivalent to the road used in the learning 

process. Figure 5. shows the vehicle model in 

ADAMS/Car on two such roads. 

3. NUMERICAL EXPERIMENT: PARAMETRIC 

MODEL SENSITIVITY 

The numerical experiments carried out illustrate how 

the proposed uncertainty quantification framework is used 

to predict an average behavior and produce a confidence 

interval in relation to the time evolution of a nonlinear 

multi-body system. A high-fidelity vehicle model is 

considered and its time evolution is marked by uncertainty 

stemming from measurements of the road profile. This 

setup was chosen due to its relevance in CBM, where the 

interest is the statistics of the loads acting on the vehicle 

for durability analysis purposes. Note that a similar 

analysis is carried out for a simplified scenario that does 

not involve the MLE learning stage by Schmitt et al. 

(2008b) in conjunction with quantifying the uncertainty of 

vehicle dynamics when running on icy roads with a 

stochastic distribution of the tire/road friction coefficient. 

 

3.1 Vehicle Model 

 

The vehicle of interest in this work is a SUV-type 

vehicle similar to the Army’s High Mobility Multi-

Wheeled Vehicle (HMMWV). A high-fidelity model of 

the vehicle was generated in ADAMS, a widely used 

COTS software that contains a template library, 

ADAMS/Car, dedicated to ground vehicle modeling and 

simulation. The steering system is of rack-and-pinion 

type. The vehicle is equipped with an Ackerman type 

suspension system. The front and rear suspensions have 

the same topology but different link lengths. The location 

of the suspension subsystem is parameterized with respect 

to the chassis of the vehicle to allow for an easy editing of 

the assembly topology. Although not a topic of interest in 

this paper that deals with infinite dimensional stochastic 

processes, this parameterization of the suspension allows 

for a Monte-Carlo based approach to quantify the 

uncertainty in vehicle dynamics produced by this model 

subcomponent. 

 

 
 

 
 

Figure 3. Up: Vehicle model, (no chassis geometry 

shown). Down: Schematic of how different subsystems are 

assembled to make a full vehicle model. 
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Figure 3 shows the topology of a vehicle with front 

and rear suspension, wheels, and steering subsystems. 

Different vehicle subsystems are individually modeled and 

are integrated together to form a full vehicle model. The 

chassis of the vehicle is modeled as a single component 

having appropriate mass-inertia properties. ADAMS/Flex 

is typically used to add compliance to the steering and/or 

chassis components of the vehicle. This process makes use 

of modal neutral format (MNF) files created using a third 

party finite element package such as ABAQUS. 

 

3.2 Tire and Road Models 

 

Two types of external forces act under normal 

conditions on the vehicle and influence its dynamics: 

forces at the tire-road interface and aerodynamic forces. 

Given the range of speeds at which the considered ground 

vehicle is driven, the former forces are prevalent and high-

fidelity simulation depends critically on their accurate 

characterization. In this context, the SUV configuration of 

interest is designed to drive over a variety of terrains, 

from flat smooth pavement to off-road conditions. 

In this study, the tire is modeled using a high-fidelity 

COTS software called FTire (Gipser 2005). FTire can be 

used for vehicle handling, ride comfort and durability 

studies on even or uneven roadways with extremely short 

obstacle wavelengths. It is a physics-based, highly 

nonlinear, dynamic tire model, which is fast (typically 

only 5 to 20 times slower than real-time) and numerically 

robust. The tire belt is described as an extensible and 

flexible ring carrying bending loads, elastically founded 

on the rim by distributed, partially dynamic stiffness in the 

radial, tangential, and lateral directions. The tire model is 

accurate at relatively high frequencies (up to 120 Hz) both 

in longitudinal and lateral directions. It works out of, and 

up to, a complete standstill without any additional 

computing effort or model switching. It is suitable for 

demanding applications such as ABS braking on uneven 

roadways. 

The road models supported should accommodate the 

fidelity representation level required by the tire model 

considered. The road modeling environment of choice is 

the one provided by ADAMS, where the road is defined 

by a text based data file (rdf). This rdf file contains the 

information about road size, type (flat, periodic obstacles, 

stochastic 3D) and coefficients of friction over the road 

surface. Defining a flat road is trivial and an obstacle in 

the road (curb, roof-shaped) can be defined by specifying 

the size and shape of the obstacle. For roads with varying 

elevations in both lateral and longitudinal directions, a 

tessellated road definition is supported in ADAMS. The 

tessellated road is described by a set of vertices/nodes, 

which are grouped in sets of three to create a triangulated 

mesh that describes the entire road surface (see Figure 4). 

A coefficient of friction can be specified for each triangle. 

This road definition works well with both synthesized and 

measured road data and it was the solution embraced for 

the numerical results reported in this work. 

The disadvantage of this road definition is that for 

each time step, the simulation has to check each triangle 

for contact with the tire patch leading to a major 

computational bottleneck (extremely long simulation 

times for large road profiles with high resolution). In 

order to simulate large road profiles, the regular grid road 

(rgr) file format can be used in conjunction with FTire. A 

conversion from tessellated to the new rgr format leads to 

smaller file sizes and significantly reduces CPU time per 

simulation step in that the CPU time required for the 

tire/terrain interaction is independent of the dimensions 

(length/width) of the road profile. This approach has been 

used in the past to analyze ride maneuvers that cover mile 

long distances. 

 

3.3 Numerical Results, Square Exponential 

 

The SUV model discussed in subsection 3.1 was 

equipped with a set of four tires generated in the FTire 

modeling and simulation package discussed in subsection 

3.2. The vehicle model was exercised through a straight-

line maneuver over a road profile for which information is 

available on a grid as follows (see also Figure 4): in the x-

direction, information is provided every 0.25 feet in 180 

slices. In the y-direction, the data is provided at a distance 

of four feet apart in three slices. The length of the course 

in the x-direction was approximately 45 feet. The width of 

the road was 8 feet. Although not reported here, 

simulations up to one mile long have been run using this 

vehicle configuration. 

The stochastic analysis proceeded according to the 

work flow in Figure 1. A road profile was provided and 

considered the outcome of a set of field measurements on 

a 180X3 grid as indicated above. MLE was carried out; 

the resulting characteristic lengths were 4.5355 
x

θ = and 

 

Figure 4: Road tessellation through a triangulation 

applied to a road profile 
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0.8740
y

θ = , which are identified in Eq. (4) with 
21

θ  and 

22
θ , respectively. A set of 200 road profiles were 

generated by sampling of the posterior; Figure 5 illustrates 

two of them. The road profiles were relatively smooth in 

the sense that there was no road geometric feature of 

length comparable to the length of the tire/road contact 

patch. The terrain was considered rigid and with a 

constant friction coefficient. 

Figure 6. Vehicle response obtained using ADAMS. A 

subset of 10 out of the 200 simulations used to generate 

the statistics of the normal force response is displayed. 

The plot shows the reaction force in a suspension joint. 

A batch of 200 ADAMS simulations were 

subsequently carried out to determine the statistics of the 

vehicle response. Ten responses are illustrated in Figure 6, 

which reports the reaction force in a suspension joint. Of 

interest here is the loading in the lower control arm (LCA) 

of the vehicle suspension, which is measured by the loads 

experienced by the suspension bushings connecting the 

LCA and the chassis. There are two such bushings, and 

there are two more connecting the upper control arm 

(UCA) to the chassis for a total of 16 bushing elements 

(eight UCA and eight LCA). Average behavior and a 95% 

confidence interval are provided for the LCA bushing 

load in Figure 7. Note that all results reported in the plots 

are in SI units. 

 

Figure 7. Statistics of vertical load, bushing attached to 

LCA. 

 

 

Figure 8. Statistics of vertical load, bushing attached to 

LCA. Detailed view focused on the last part of run. 

 

 

Figure 9. Statistics of vertical acceleration as measured at 

the CG position of the chassis: mean and 95% confidence 

interval. 

 

 

Figure 5. Vehicle on 2 different road surfaces. The two 

roads are generated using the same training data.  
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3.4 Numerical Results, Ornstein-Uhlenbeck 

 

The results reported in this subsection are obtained by 

setting 2γ =  in Eq. (4). This change leads to Ornstein-

Uhlenbeck GRF posteriors that lack differentiability. In 

fact, the SE ( γ = 1 ) is the only exponential GRF that is 

continuously differentiable. Figure 10 shows the load 

history for the same bushing element that was considered 

for the results in Figure 7. Figure 11 is a zoom-in to better 

gauge the 95% confidence interval for the LCA load. 

Finally, the vertical acceleration associated with the OU 

process is reported in Figure 12. Note that for OU the two 

characteristic lengths obtained at the end of the MLE 

stage are 1.0849e 003
x

θ = +  and 0.1830
y

θ = . 

 

Figure 10. Vertical load statistics, bushing attached to 

LCA. 

 

Figure 11. Statistics of vertical load, bushing attached to 

LCA. Detailed view focused on the last part of run. 

 

3.5 Discussion of Numerical Results 

 

The results reported in Figure 8 and Figure 11 suggest 

that the experimental data is gathered on a dense enough 

grid. Specifically, there is relatively small variance in the  

response of the vehicle, which is a very desirable response 

characteristic. This can be also seen in Figure 8, which 

illustrates the statistics associated with the last part of the 

simulation. This is an indication that the grid used is 

sufficiently fine to limit the amount of uncertainty 

stemming from the uncertainty in road profile. In other 

words, the measured road data is provided at a level of 

granularity sufficient to pinpoint with good precision the 

load history for the force acting at a hot point of the LCA. 

The results reported in Figure 9 indicate the statistics 

associated with the vertical acceleration of the center of 

gravity (CG) of the chassis. In this context, information 

regarding the vertical acceleration and the jerk measured 

at a location where the vehicle driver is positioned is 

valuable as it is used to gauge ride comfort and the 

potential for vibration induced fatigue during long term 

exposure of a vehicle driver. 

Finally, the comparison of results reported in Figure 7 

and Figure 10, or Figure 8 and Figure 11, or Figure 9 and 

Figure 12, demonstrates the qualitative difference between 

the SE and OU exponential GRFs. The OU family leads to 

processes that are nonsmooth, while the SE family leads 

to road profiles that are continuously differentiable. This 

is eventually reflected in the smoothness of the output: the 

SE response is smoother compared to the OU outcome. 

Nonetheless, there is good agreement between the results 

obtained with the OU and SE, and if this roughness 

associated with OU leads to any significant change in 

CBM decisions remains to be investigated. This task falls 

outside the scope of this study.  

4. CONCLUSIONS AND FUTURE WORK 

This paper outlines a methodology for determining 

the statistics associated with the time evolution of a 

nonlinear multi-body dynamic system operated under 

input uncertainty. The focus is on the dynamics of ground 

vehicle systems in environments characterized by multiple 

sources of uncertainty: road topography, friction 

coefficient at the road/tire interface and aerodynamic 

force loading. The methodology outlined is general and 

can be applied to systematically study the impact of 

sources of uncertainty that were characterized herein by 

 

Figure 12. Statistics of vertical acceleration, as measured 

at the CG position of the chassis: mean and 95% 

confidence interval. 
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random processes. The scope of the discussion is limited 

to the case of unknown road profiles at the wheel/road 

interface of an SUV. The same approach can be used in 

conjunction with vehicle design parameters by substituting 

the GRF machinery with that of sampling from a random 

variable distribution. The latter scenario is simpler and not 

discussed here. It would closely follow the methodology 

outlined in Figure 1 in the sense that one could deal with 

parametric or nonparametric models, and then invoke 

MLE to obtain the hyper-parameters associated with the 

posterior distribution. The latter is subsequently sampled 

in a Monte-Carlo analysis to gauge the impact of 

uncertainty on the dynamics of the model. 

The results reported herein suggest that the choice of 

correlation function is important. Further work is needed 

to better understand the sensitivity of the system response 

with respect to the correlation function. In this context, 

two directions of future work could prove insightful. First, 

it would be useful to bring into the picture other GRF 

correlation functions, both stationary and non-stationary, 

to understand the importance of the parametric model 

choice. This direction is currently under investigation 

(Datar 2008). Second, it would be useful to lift the 

requirement that the stochastic approach be molded upon 

the GRF idea. Nonparametric models should be 

considered and the improved flexibility should be 

weighted against their more involved analytical 

derivation, method implementation, and computational 

burdens.  

Even before considering nonparametric techniques the 

computational load associated with the methodology 

proposed can be significant. This is particularly the case 

when the amount of learning data is vast and/or the 

posterior is sampled on a very fine grid. This issue can be 

addressed by either allocating more computational power 

to solve the problem or by considering new sampling 

techniques. Recent inroads into better sampling 

techniques have been recently reported by Schmitt, 

Anitescu et al. (2008a), where a substantial reduction in 

sampling effort is demonstrated by the use of two new 

approaches. The first makes a periodicity assumption that 

enables a Fast Fourier Transform (FFT) technique to be 

used for posterior sampling, while the second uses 

compact kernel covariance functions to sample the 

posterior on small sliding windows that are continuously 

moved to follow the vehicle in its motion over the region 

of interest. 
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